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1    Introduction: 

In nature, birds change their wing shapes to achieve proper flight performance. Humans have 

long pursued the dream of achieving bird-like flight performance. Efforts in that direction led 

to the development of rigid control surfaces such as an elevator, ailerons, a rudder, and flaps for 

conventional aircraft. However these efforts were only adequate for limited flight envelops and 

maneuvers. Many modern fighter aircraft are required to possess rapid maneuverability at high 

speeds. If one attempts to accomplish this with traditional control surfaces, many difficulties arise. 

One of them is the roll reversal phenomenon and the other is the vibration problem. During a 

swift roll motion, wings are deformed significantly due to high dynamic pressure. In recent years, 

therefore, design and control of a deformable wing based on smart structure actuation and sensing 

has become an active topic of research in the aerospace community. A properly deformable wing 

structure is expected to enable the aircraft to have faster and gentler maneuver as well as more 

efficient and safer performance (like that of a bird) by using the interaction among the elastic 

structures, smart materials, and external aerodynamic pressure. Federal Research Laboratories 

such as Wright Laboratory, DARPA, and industries such as Northrop Grumman are actively 

engaged in research and development of this challenging multidisciplinary area with extensive 

applications [1][2]. 

Most of the previous modeling and control design research in this multidisciplinary area 

is confined to integration of any two subdisciplines such as structures and control, control and 

smart materials, structures and smart materials. Only recently the truly integrated problem of 

incorporating all four subdisciplines, namely structures, aerodynamics, smart materials and control 

system design is being attempted. This type of pure and straightforward integration of these four 

disciplines is realized to be a complicated task requiring expertise in all of these disciplines. In 

addition, for applications involving aircraft maneuvers one should even add another sub discipline, 

namely flight mechanics! One of the first attempts to incorporate structures, aerodynamics, control 

and flight mechanics (addressing specifically the roll maneuver) are the series of papers by WL and 

Northrop Grumman researchers Khot, Eastep, Kari Appa and their colleagues [3] [4]. In research 

presented in this report, an attempt is made, perhaps for the first time, to achieve integration of 

all the above five disciplines! In this research, efforts are undertaken to model and control the 

aeroelastic dynamics of a flexible wing structure embedded with piezo material for actuation and 



sensing so that a roll maneuver with a desired roll rate is achieved by actively deforming the wing. 

Typically, the motion of the multi-disciplinary flexible aircraft structures, such as a piezo- 

laminated aircraft structure in aerodynamic field[5], can be expressed in the form of multi-variable 

linear ordinary second order differential equation in the 'configuration or generalized' coordinates 

in the form of the well known 'Matrix Second Order (MSO)' system framework involving Mass, 

Damping and Stiffness matrices. The pure structural system, generally, consists of a constant sym- 

metric positive definite and a positive semi-definite mass and stiffness matrices, respectively. The 

multi-disciplinary flexible aircraft structural system, however, is formed with a symmetric positive 

definite mass matrix but a nonsymmetric and indefinite damping (which includes aerodynamic 

damping) and stiffness (that includes aerodynamic and piezo material stiffness, in addition to the 

standard structural stiffness) matrices. For flight mechanics problems, the static deformation of 

the wing is essential to obtain desired performance of the aircraft. Thus, deformed structural 

mass, damping, and stiffness matrices, which are functions of the steady- state voltage input for 

obtaining the desired flight maneuver is also included in the control design model. 

The piezoelectric voltages serve as the control variables. To have constant roll rate, a new 

framework called 'Reciprocal State Space' framework is used for control design purposes. This 

new modeling and control design methodology is illustrated with the help of an example and its 

efficacy clearly demonstrated. First, the large model for the deformed structural dynamics in the 

generalized coordinates is transformed to a set of 'nonorthogonal modal' coordinates and model 

reduction is carried out in these modal coordinates. Typically, this model is then converted to the 

'state space' form and a control design algorithm is developed treating the problem as a regulation 

problem. 

The resulting full state and state derivative feedback controller is possible only when every 

state and state derivative measurements are available. Practically, however, it is impossible to 

measure all the states and their derivatives. For example, the piezo-laminated aircraft structure 

in aerodynamic field provides only displacement information through piezoelectric sensors. Thus, 

an observer is required to design a proper feedback controller. Traditionally, the observers are 

designed in the first order state-space framework. However, there are several noticeable problems 

in the first order observer that is designed by converting a second order system to a first order 

state space form. In this research, therefore, a new second order observer design is presented to 



obtain improved controller performance as well as to determine the minimum number and location 

of the sensors. In the next section we present the details of the integrated modeling for control 

design purposes. 



2    Integrated Modeling for Smart Flexible Deformable Wings: 

In Kari Appa, Knot, et al. [6], the matrix second order equations of motion are first derived using 

the 'orthogonal modal' coordinates of the pure structural dynamic system, and the aerodynamic 

pressure distribution to achieve roll motion is assumed to be known along these 'modal coordinates', 

which is the typical procedure currently followed by most aeroelastic studies. However, in this 

research, attempts are made to obtain a more generic model that is applicable not only to the 

present problem of roll maneuvers but also to the future applications involving pitch, roll and 

yaw maneuvers. With this in mind, it is argued that this type of generic maneuver model can be 

developed easier in the 'generalized' coordinates rather than in the orthogonal modal coordinates. 

In the orthogonal modal coordinate approach, it is difficult to simultaneously consider the influence 

or coupling of the other subsystems such as aerodynamics, controls, flight mechanics and smart 

material actuation and sensing whereas this is possible in the direct 'generalized' coordinates. 

Of course there is a price to be paid later for this generality! It is that when model reduction 

is required for control design, the necessary step of converting to the modal coordinates involves 

'nonorthogonal' modal coordinates! However, it is felt that this is a smaller price to pay considering 

the 'true integration' achieved when modeling is done in the 'generalized' coordinates. So in what 

follows, we develop a finite element model with nodal displacements as the 'generalized' coordinates 

and simultaneously incorporate the aerodynamic pressure distribution as well as piezo actuation 

directly integrated into this finite element model. 

2.1    Finite Element Modeling of a Smart Material (Piezoelectric) Wing Subject 

to Aerodynamic Loads: 

The constitutive equations for a piezoelectric material are expressed as [7] 

{T}   = [c]{S} - [ef {E} (1) 

{D}    = [e]{S} + [e]{E} (2) 

where 

{T}     = [<JXx <7yy &zz &yz &ZX &xy\     \ Stress Vector 
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2.2    Finite Element Model using Coupled 8-node Brick Elements 

In order to generate the finite element formulation of a flexible wing, 8-node coupled brick ele- 

ments(Fig. 1) are employed. The shape functions of the elements are expressed as 

iVi = ^(l + «i)(l+*TO)(l + CCi) (3) 

Each node of the element has 4 degrees of freedom which are spatial displacements^, v, w) 

and voltage(V). These displacements and voltage are coupled to each other according to the 

constitutive equation (Eq. 2). The displacement fields with the shape functions in the finite 

element model are expressed as 

u   =    (N,]{ft> = [Ng]q (4) 

(5) 
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Figure 1: Coupled 8 Nodes 3-D Solid 
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Then, the strain and electric fields are written as 
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Figure 2: A Twisting Motion in a Flexible Wing 



(a) (b) 

Figure 3: Torsional Motion of Cross Section of a Wing 

2.3    Torsional Motion of Piezo-electric Continua 

Since lift forces are varied by changing the angle of attack, a, of a wing, which in turn can be 

changed by the twisting motion of the wing, it is clear that we need to impart twisting motion to 

the wing to be able to generate the required moments for various flight maneuvers such as roll. 

Fig. 3(a) and Fig. 2 show angle of attack and twisting motion of a wing, respectively. A pair of 

shear strains, 7iy, in opposite direction are needed to produce twisting moment of wing as shown 

in Fig. 3(b). The directional attachment technique of the piezoelectric actuators [8] is employed 

to achieve twisting motion of the wing. From Fig. 4, the relation between the principal axes and 

reference axes is expressed as 

{T}   =    [Tt]{T} 

{S'}   =   [TS]{S} 

(8) 

(9) 

where 

[Tt] = 
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Figure 4: Skew Angle 
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Then Eq. 2 is expressed as 

{T}   =   [c]{S} - [ef {E} 

{D}   =   [e]{S} + [e]{E} 

where 

[c] = [Tt]"
1[c][Ts],   [e] = [e][Ts] 

(10) 

(11) 
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It can be observed from Eq. 10 and Eq. 11, that the modified piezoelectric constant, [e] matrix 

has non-zero e^e entry. The torsional motion can be produced by this coefficient. As shown in 

Fig. 4, two layers, bottom and upper layers, with opposite skew angles are required to generate 

torque of the wing. The maximum shear strain, ^xy can be obtained when the skew angles are f. 

2.4    Modeling of Aerodynamic Pressure Distribution Generating Roll Maneu- 

ver 

We now consider the modeling of aerodynamic pressure distribution on the flexible wing structure. 

According to piston theory [9] [10] the aerodynamic pressure on the surface of a wing for a high 

Mach number (M > 1.6) is expressed as 

*--[*(£)+»(£)] (12) 

where 

A   = 

Pa     : 

Ua     : 

2? 
(M2-l)0-5' 
air density 

air velocity 

9 = 
A  M2 

Ua M2 
•2 1    „2 

Fig. 5 shows a 32 degrees of freedom brick element with aerodynamic loads. According to 

Eq. 12, these loads are changed by the vertical displacements of nodes and are assumed to act along 

the x coordinate. It is assumed that the pressure difference between upper and lower surfaces of 

the wing acts on the upper surface. 

By substituting Eq. 4 into Eq. 12, the Eq. 12 can be rewritten as 

Aj> = -A[N0]>eq - ff[N0]q 

where 

(13) 

[Na]     = 

00       0       00       0       00       0 

00       0       00       0       00       0 

0   0   iVi>c=1   0   0   iV2)C=i   0   0   iV3,c=i 

11 
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Figure 5: Coupled 8 Nodes 3-D Solid with Aerodynamic Load 

2.5    Equation of Motion via Hamilton's Principle 

The equation of motion of the wing can now be derived from Hamilton's principle which is expressed 

as 

r*2 

Jti 
{ST - SU) dt = 0 (14) 

where ST and SU are the first variation of kinetic energy and total potential energy including 

mechanical strain energy, electrical energy, and work done by externally applied forces and charge, 

respectively. Those energies are expressed as [11] [12] 

ST = I on Su. dV 
Jv 

SU   =    [{S{S}T{c]{S}-S{S}T[e}{B}-5{^}T[e]T{S}-S{E}T[e]{B}}dV 

(15) 

7. (t Su - Q 5<p) dS (16) 

where p,u,t, and Q are mass density, displacement vector, surface traction and surface charge, 

respectively. By substituting Eq. 15 and Eq. 16 into Eq. 14, the Hamilton's Principle with piezo- 
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electric material is expressed as 

/y{*{S}r[c]{S} - *{S}r[e]{E} - *{E}r[e]T{S} - WTM{E> 

+pöiLT ü}dV- f (<5urt - Q Sip) dS = 0 (17) 
Js 

By substituting Eq. 4        through 7 into Eq. 17, the Hamilton's Principle with the finite element 

method can be written as 

f    {8qT [Bq? [c] [B,] q + <5qr [B,jT [e]r [B„] <p + 8<? \Bvf [e] [Bq] q 
Jv 

+6<pT [Bvf [e] [Bv] <p + P6qT [Ngf [N,] q} dV 

- f {(SqT [N,]J=1 (-A [Na],e q - g [Na] q) - 8*? \Svf Q} dS 
J Ö 

= 0 (18) 

Eq. 18 can be reorganized as 

8qT{j \Bq}T[c][Bq]dVq + ^[B,]T[e]r[B„]dF + ^p(N9f[Ng]^q 

+ /dN,f=1[Na]d5q + ^A[N,f=1[N0]d5q} + 

<^r{^[Bv]r[e][Bg]dFq + Jv\Bv]T[e]\Bv]dVtp 

-J^fQdS} = 0 (19) 

From Eq. 13, the aerodynamic loads are expressed in terms of the generalized coordinates of 

the element. Moreover, in Eq. 19, the loads are grouped as the stiffness and damping coefficient 

matrices of the system. These coefficients are labelled as aerodynamic stiffness and damping 

matrices. If Eq. 19 is rewritten in a matrix form, the well known Matrix Second Order System 

[13] can be obtained 

M   0 q 
f 

CA   0 q + 
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Kg + KA     Kqtp q 0 

Q 
(20) 

where 
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3    Equation of Steady Roll and the Corresponding Deformed Struc- 

tural Vibration Model 

Aircraft flight maneuvers axe always accompanied by structural vibrations. In this research, specif- 

ically the roll maneuver with a constant roll rate and the resulting structural dynamic vibrations 

are analyzed. The structural dynamic deformations under the roll maneuver with a desired roll 

rate are modeled clearly as follows. Fig. 6 shows a plate wing with roll axis constraints. 

3.1    Equation of Motion for Roll for Deformable Wing 

The roll motion, generally, is expressed as an angular motion. The finite element model, however, 

is expressed in terms of generalized coordinates which are nodal displacements. So in this research, 

the roll angular motion is obtained by first modeling the deformation of the wing under steady 

state roll rate which in turn is achieved by steady state voltage actuation. Since, the model of 

the wing is expressed with nodal displacements and voltages, the angular displacement cannot be 

directly modeled in the generalized coordinates. The angular displacement of roll motion and its 

relationship to the input voltage can be obtained from the moment equilibrium equation of the 

wing. The roll equation of motion for a wing as shown in Fig. 7 is expressed as 

lj> = MR (21) 

where 

I = ^ml2 : Moment of inertia 

<f>: Roll angle 

MR : Rolling moment due to lift 

The rolling moment due to lift, MR, is expressed as 

MR = f L{y)dy (22) 
Jo 

where L(y) is lift force. 
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Figure 6: Wing Plate with Piezoelectric Lamina 

y 

Figure 7: Roll Motion of a Wing 

The lift, L(y), is written as 

L(y) = qcCL(y) 

where q = ^Y~ "• dynamic pressure 

p : air density 

U : air velocity 

c : airfoil span 

CL{V) • lift coefficient 

(23) 
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The lift coefficient, CL{V), is can be expressed as a function of a, angle of attack 

^) = ^h(y)+ae(y)] (M) 

where a0{y) and ae(y) are angle of attack for zero lift and due to elastic twist. Note that, ae{y) 

can be written as 

ae(y) = *pz(y) - \j W 

where 

apz(y):angle of attack produced by piezoelectric actuation 

Q: Induced angle of attack due to roll rate \P\ 

By substituting Eq. 25 into Eq. 24, the lift coefficient is written as 

CL(y) = CLa(apz(y)-jf) W 

where CLa = ^. 

By introducing Eq. 26 into Eq. 23, the lift is expressed as 

L(y)   =   CLaqc[avz{y)--^-J 

.   £^*!(My,-f) (27) 

Then, the rolling moment is obtained as 

CLapcU2 fl\     . .     Py 

_ cLaPcu> r PI2 , [l 

2U 
/ OLpZ{y)dy 

Jo 
(28) 

By substitution Eq. 28 into Eq. 21 and using P = <£, the equation of motion for the roll can be 

expressed as 

li+£i^li = £i^lfapMdy (29, 
4 Z Jo 

A finite element model analysis, as depicted in Fig. 8, is required in order to find the relationship 

between the angle of attack, OpZ(y), and the nodal voltage input, v. For the purpose of modeling, 

it is assumed that chordwise segments of the wing remain rigid. Fig. 9 shows the cross sectional 

area and angle of attack, a, of the wing.   The angle a is the twisting angle due to the piezoelectric 
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Figure 8: The Finite Element Model of the Wing Plate with Piezoelectric Lamina 

Figure 9: Cross-sectional area of a wing 
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actuation in the element local coordinates. First, the angle of attack in the element coordinates, 

apZ{r}) has to be obtained (ctpZ(y) =>• apz(r})). From the assumption, the angle a is constant 

through the chord line for the small twist angle. Since the angle of attack is measured from the 

centerline of the cross section of the wing, the angle a is expressed as 

r \      dw (30) 

where w and c2 is transverse displacement at nodes and z coordinate values of center line of the 

wing, respectively. In the element local coordinates, the angle a is expressed as 

<vfo> = £ (31) 

where c,j is the coordinate value for centerline of the cross sectional area of the wing in the local 

coordinate. Finally, the angle a is expressed in the generalized coordinates as 

Opz(v) = [Ltw] Wq] 1 = [Btw] Q (32) 

where 

[Ltw] = 0  o   $ 
C=cc . 

[Btw] = 0   0    f 0   0    3& 
C=cf                         9« C=cc 

...   0   0    SZa. 
C=cc   . 

1 T 

[q] = Ul     V\     % »\ U2 V2     W2     •• •   u8 t>8    ^8 

To build full model, the angle of attack has to be integrated into the physical coordinates which 

is expressed as 

(33) 
/•a/2 
/    OpZ(y)dy 
Jyi 

where y\ and 2/2 are lower and upper bound for the element in the y coordinate as shown in Fig. 10. 
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Figure 10: Finite element Model for a Wing 
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Since the twisting angle is constant throughout the chord line, £ can be selected as zero. The 

modified shape function is expressed as 

The y coordinates are written as 

y = 53-A/ii«. 

Prom the chain rule 

j dy j- dy   =   -d« 

i dMi 

(34) 

drl «=i drl 

The angle of attack for the jth structural element in the physical coordinate y is expressed as 

rv* 
Aj   =    /    OpZ{y)dy 

Jyi 

(35) 

(36) 

(37) 

(38) 

=   [BJJOJ^ 

where 

gj : the generalized coordinates for jth element 

[*«] = 0   °   /i*c^*   °   °   ÄT^*'   -   °   °   /-i^c-^c*1 

Jo^Zti^w.*?- 
Thus, the total integration of the angle of attack is written as 

p 

/ apZ(y)dy   =   J2A: 
Jo 7Z\ i=i 

(39) 

(40) 

where [Baq] is the (1 x n) matrix which contains [Ba] Jaj for the corresponding nodal displacement 

q. The nodal displacement vector q can be expressed as function of voltage input from the equation 
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of motion of the cantilevered wing which is expressed as 

[Mg)q + [Kg)q = -[Kqip}v (41) 

where v is voltage input. Fig. 11 shows the twisting motion of a cantilevered wing with voltage 

actuation. 
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Figure 11: A Twisting Motion in a Cantilevered Wing 
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Figure 12: Deformed Coordinates 

Since the twisting angle is the static deflection of the wing, Eq. 41 can be reduced to 

[Kq}q = -[Kw]vr (42) 

where vr is voltage input for roll. Since the stiffness matrix of the cantilevered wing is not singular, 

the displacements are expressed as 

q=-[Kq]-l[Kqtp]vr (43) 

By substituting Eq. 43 into Eq. 29, the equation of motion for roll motion with voltage actuation 

is expressed as 

rl ■ cLapcUl21  _    CLapcU2 rr> i        , ,... 
I(P + (p  =   [Baq] [Kg] [Kgp] Vr (44) 

3.2    Equation of Motion for Deformed Structure 

The next task is to analyze the vibrational motion of the wing. Considerable amount of research 

exists on the vibration suppression of flexible structures [14][15][16]. However, there are actually 

not many studies undertaken for modeling vibrations associated with flight maneuvers. In a roll 

maneuver with flexible wing, deformation of the wing is essential to achieve the desired roll motion. 

If vibration control is designed based on the original equation of motion of the wing, Eq. 41, 

however, it is difficult to achieve the desired angle of attack and the desired roll rate. Therefore, 

a new equation of motion for the deformed structure is required to dissipate the vibration of the 

wing as well as to obtain the desired roll motion. For this, we first formulate the finite element 

model based on the deformed coordinates, x^, yj and z^, as shown in Fig. 12. The displacement 

24 



fields are then written as 

ud    =    [N9]qd 

¥>d    =   [N^]{vd} 

(45) 

(46) 

where 

[q] = U<ti     Vdi     Wdx     Ud2     Vd2     Wd2 

T 

vdl vd2 ••• vd8 

■   Ud8   vd8   wda 

The strain fields are expressed as 

Sd    =    [B?]qd (47) 

Ed   =   [lMvd (48) 

To obtain the equation of motion for the deformed structure, the following physical coordinates 

are used. 

(49) 

where 

Xd = X + qi 

[Xd]   = %di    Vdi    zdi    xd2    Vd2    
zd2    "'    xd8    Vd8    

zd& 

r                                                                                   1 T 

[X]   = xi    2/i    z\    x2   2/2    z2    •■•    x8   t/8   z& 

[qi] = qii   Qh   ■••  9/8 

T 

lT 

Prom the original undeformed structure, the initial displacement, qi, can be obtained as 

q1 = -[Kq]-1[Kqip]vr (50) 

where vr is voltage input for desired roll.   By substituting Eq. 50 into Eq. 49, the deformed 

coordinates are expressed as 

Xd = X-[Kq]-1[Kqv,)vr 

25 
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Finally the equation of the motion for a deformed structure in the aerodynamic field is then given 

by 

Md   0 

0     0 

q'd + 
cAd  0 

0     0 

q'd + 
Kd + KAd    K, Wd 

K, <pid 

where 

Md   =   f_1f_1f_lPlN<iFlN<i'\\Jd\dtidVd{ 

KA
*    

=   j'j^^U^^äl^drj 

K<PQd     —     KqVd 

K™d    =    f_J_J_lV
BV?tä&<p\\Jä\dtdrldC 

Kt <PV>d 

qd o 
Qd 

(52) 

and Ja is the Jacobian matrix for the deformed structure. 

Jd   = 

Ja    = 

im im im mu <m (w* w? w* 

im dNz dNi §N± <m ÖN& dN^ dN^ 
drf chf drj~ ~Th) ~bl) ~W ~!h) ~lh] 
im Mz tm §N± ö£fc 8NR §NT_ ÖNR 

dNi      8N2      dN; ats\      oi\2      oswx     on* 
~W     ~W     ~W     ~W 

dN?. 
&T) 

dN% 
dr, 

dNA 
dr) 

Xdi Vd! 

xd2 Vd2 

xd3 Vd3 

. xdA Vd4 . 

xdx Wi zd\ 

xd2 Vd2 zd% 

xd3 Vd3 zdz 

xdA Vd4 zdi 

xd5 Vds zd5 

xde Vck zde 

xd7 Vdr zdr 

xd& Vds zd$ 
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4    Control Design Specifically Tailored to Smart Structural Sys- 

tems 

State space representation is a useful tool to design controllers for linear systems and many control 

design methods in state space framework are available for achieving stabilization and regulation 

of the state variables. However, for our particular problem at hand, namely, to achieve a desired 

constant roll rate, it turns out to be cumbersome to use state space based control design because 

the steady state constant roll rate implies infinite roll displacements as time progresses. Therefore, 

the closed loop system is considered unstable. To overcome this problem and still design a simple 

controller using available control system software for this desired roll rate achievement problem, 

we propose a new framework called the 'Reciprocal State Space' framework [17]. This is discussed 

in the next section. 

4.1    Full State Derivative Feedback Control Design for Roll Motion using Re- 

ciprocal State Space Representation 

The state space representation of Eq. 44 is expressed as 

'4> 

0 1 <f> + 
0 ZCLnPcU 

4ro A ZCLapOP 
feg^ [Baq] \Kq]-1 [K„] 

xr   =   Arx + Bru (53) 

where x = \<f> <f>\   . 

The reciprocal state space representation of the system is expressed as 

x   =   Gx + Hu 

u   =   Kx (54) 

where 

G = A^\  H = -A^1BT 

For regulation problem, 

i   =   x + V 

£   =   x + V (55) 
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where 

V =   pd 

V =   pit 

Pd    •    desired roll rates 

Then, Eq. 54 is written as 

(   =   Gi + Hu (56) 

u   =   Ki (57) 

Prom Eq. 54, the performance index to be minimized is expressed as 

J = J     [?Q£,+uTKu\dt (58) 

where Q and Tl are positive semidefinite matrix and positive definite matrix, respectively. Accord- 

ing to references [18][19], the LQR state feedback gain is written as 

K = KIEF'S (59) 

The matrix S can be obtained from the associated Algebraic Matrix Riccati equation which is 

expressed as 

0 = SG + GTS - SHTl-lHTS + Q (60) 

28 



5    Model Reduction in Nonorthogonal Modal Coordinates for De- 

formed Structure 

Prom Eq. 52, the equation of motion with voltage actuation is written as 

Mdq + CAdq+(Kd + KAd)q = -KWdv (61) 

By premultiplying MJ1 for both side of Eq. 61, the Eq. 61 is expressed as 

q + M^CAA + MjHKd + KAd)q = -MjlKWdv (62) 

The modal equation of motion of the system can be obtained with a similarity transformation 

that diagonalizes the integrated stiffness matrix [20]. 

Let 

q = TV (63) 

where 

T = [h t2 *3 -tn]   U ■ eigen vector of Mjl(Kd + KAd) 

Then, Eq. 62 can be written as 

fj + Cr,V + A77 = Fr,<p (64) 

where 

V = for Vfi Vf2 ■■■] 

C„ = T-'M^CA.T 

A = T-1Md~1{Kd + KAd)T = diag(Ar, Afl,Af,,...) 

Fv = -T~lM?KWi 

But the model in this (nonorthogonal) modal coordinates is too large for meaningful control 

design. For this purpose, we carry out a transformation to the nonorthogonal (but real) modal 
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coordinates clearly identifying the roll mode and all the flexible modes. The corresponding state 

space form of Eq. 64 is written as 

V 0        / V 

7)                        -A     -Cr, 

x   =   Ax + Bu 
V 

+ V 

(65) 
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6    New Observer Design 

The full state and state derivative feedback control design, which is presented in the previous 

section, is achievable only if every state and state derivative is measured. In real world, every 

state and its derivative, however, cannot be measured. As an example, the piezo-laminated aircraft 

structure in aerodynamic field provide only displacement information through piezoelectric sensors. 

Therefore, an estimator design is required to build a proper and useful controller. 

The motion of the multi-disciplinary flexible aircraft structures, such as a piezo-laminated 

aircraft structure in aerodynamic field [5], can be expressed in the form of multi-variable MSO 

differential equations through the well-known finite element method. Traditionally, the MSO 

system is converted to the first order standard state-space. The rationale for this is as follows: 

firstly, it is easier to handle the first order state-space differential equation rather than the MSO 

differential equation, secondly, there are handful of valuable and reliable control design methods 

and stability theories in the state-space, and finally, any higher order linear differential equation 

can be converted to the linear first order state-space. 

However, there are several unique problems associated with the standard technique of trans- 

forming the MSO system into a state-space framework. First of all, it is difficult to preserve the 

physical properties such eis mass, stiffness and damping coefficients in the state-space framework. 

As seen before, a typical MSO differential equation is of the form. 

Mq + Cq + Kq = bf (66) 

where Mnxn, Cnxn and Knxn are mass, damping and stiffness matrices, respectively. bnxm is 

actuator distribution matrix. qnxi and /mxi are generalized displacements and external forc- 

ing vectors, respectively. The state-space representation for above MSO differential equation is 

expressed as 

9 

9 

0 

-M~lK 

x   =   Ax + Bf. 

I Q + 
0 

M~lC 9 b 
f 

(67) 

In the MSO system, Eq. 66, valuable information can be obtained by analyzing the coefficient 

matrices.  For example, the quantities of mass, damping, and stiffness can be observed directly 

31 



from the coefficient matrices M, C and K. The orthogonality of the system also can be determined 

by looking at the symmetric configuration of M and K matrices. 

However, this information cannot be directly obtained in the state space because the mass, 

damping, and stiffness coefficient matrices are mixed into the system matrix '-A' as shown in 

Eq. 67. Secondly, in the state-space, the system size becomes large [13] and it is difficult to apply 

acceleration feedback control design which is effective to minimize the control effort[17]. Moreover, 

the correct estimate values for the second order system cannot be obtained through the first order 

observer, which will be explained later. 

The disadvantages of the first order control scheme can be eliminated by using the second 

order controller and observer design schemes as shown in the literatures[13][17]. Especially, the 

proper estimated values for the second order system can be achievable through the proposed 

second order observer design scheme. However, because of the special structure of the observer 

gain matrix of the second order observer, the observer does not obey the existing observability 

criteria. Therefore, in this study, a new necessary and sufficient condition for the introduced second 

order observer design is determined. 

6.1    The Disadvantages of the First Order Observer 

Introduced in late 1950's, the first order state-space control design technique has been very useful 

and important. The advantages of the state-space are that any higher order dynamic systems can 

be described by a set of the first order differential equations; it is easy to handle the multiple-input 

multiple-output (MIMO) system; and a number of stability and control theories exist. However, 

there are several problems to handle the second order system in the first order state-space as 

mentioned in the introduction part. The most significant problem among them is the mismatch of 

the estimated values for the velocity information, q and q, in the first order observer design. The 

typical first order observer is written as 

0 / 

-M~lK   -M~XC 

y   =   Cx 

y   =   Cx. 

9 0 «i 
r                       -i 

« + u — y-y 
9 b «2 "■                 ■* 

(68) 
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where «i and K2 are the observer gain matrices. Subtract Eq. 68 from Eq. 67, then 

q-q 

q-q 

0 / 

-M~lK   -M~lC 

r          ~\ " 
q-q 

q-q 
+ «1 

«2 
Cl C2 

q-q 

q-'q 
(69) 

Let, ei = q — q and e2 = q — q, then Eq. 69 is written as 

ei 

e"2 

KlCl / + «lC2 

-M"1^ 4- K2CI   -M~lC + K2C2 

ei 

e2 

(70) 

Prom Eq. 70, e'i 7^ e2 unless «1 = 0, which is usually not zero in the first order observer. As a 

result, the unique values for q and q cannot be obtained through the first order observer. The 

differences between q and q are easily observed if Eq. 68 is rewritten as 

q   =   q + Ki y-y 

-1; q   =   -M~lCq-M~LKq + bu + K2 y-y (71) 

6.2    The Proposed 'Natural' Second Order Observer 

The disadvantages of the first order control scheme can be eliminated by using the second order 

controller and observer design schemes as shown in the literatures[13][17]. Especially, the unique 

q can be achievable through the introduced second order observer design scheme. The introduced 

observer design scheme is written as 

Mq + Cq + Kq   =   bf - Lv{yv -yv)~ Ld{yd - yd) 

yv = Hvq, yd = Hdq 

yv = Hv"q, yd = Hdq. (72) 

where Lv and Ld are the observer gain matrices. Hv and Hd are the sensor distribution matrices. 

From Eq. 72, the unique estimate values of the velocity information can be obtained through the 

second order observer. It is more clearly shown when the observer is written as the first order 

state-space form. The state-space form of the second order observer is expressed as 

9 0 / 

-M~lK   -M~lC 

x   =   Ax + Bf + Ge 

q 0 0 0 q- -<7 
+ / + 

L * M~lb LdHd LVHV 9- -9 

(73) 
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where 

x   = Q   q 

e   = q-q   q-q 

According to Eq. 73, the two partition matrices, Gn and G12, which are equivalent to «i in the 

first order observer in Eq. 68, are inherently zero in the second order observer while «i is usually 

not zero in the first order observer. Because of these zero gain matrices, the partition matrices 

An and A12 of system matrix A in the state-space remain as zero and identity matrices in the 

closed loop error dynamics. In other words, the characteristics of the second order dynamic are 

preserved in the second order observer design. The above Eq. (73) can be reorganized as 

e 

e 

0 I 

-M~lK   -M~lC 

e   =   {A + FLH)e 

+ 0 
L(L   Liv 

Hd    0 

0    Hv 

e 

e 

(74) 

where 

g = 

A   = 

F   = 

L   = 

H 

e   e 

0 / 

-M~lK   -M~lC 
(2n x 2n) 

0 
(2n x n) 

Ld   Lv 

Hd    0 

0    Hv 

(n x 2rc) 

(2n x 2n). 

The determination of gain 'L' follows the output feedback control design scheme. 
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7    Illustrative Example for Roll and Vibration Control 

A PVDF plate wing with 2 layers and 16 elements, as shown in Fig. 13, is considered for control 

design whose objective is to achieve a desired constant roll rate as well as to suppress flexible mode 

vibrations. Each layer has opposite skew angle to generate torque of the wing. One half of the 

plate has eight 8-node brick elements with the total number of nodes being 30. In other words, 

the system has 120 degree of freedom, 90 for structural and 30 for electrical degrees of freedom. 

It is observed that the open loop system is unstable. Usually, a pure structural system is neutrally 

stable. But, the structure in the aerodynamic field is no longer stable because of the presence 

of the nonconservative aerodynamic field which contributes some stiffness as well as damping. 

By applying the proposed control design technique, the closed loop system is not only stabilized 

but also a desired constant roll rate of 1.5 rad/sec is achieved. Fig. 14 shows, for a selected set 

of weighting matrices, the roll rate responses. From this figure, it is clear that the desired roll 

velocity of 1.5 rad/sec is achieved by the controller. The corresponding roll angles are shown in 

Fig. 15. The roll angle gradually increases as expected. Fig. 16 shows the input voltage for the 

roll maneuver. The input voltage is used to build the deformed structure model. The rest of the 

flexible mode responses for the deformed structure are shown in Fig. 17, Fig. 18 and Fig. 19. It is 

easily seen that all flexible mode vibrational motion is suppressed effectively. Fig. 20 shows the 

control input voltage histories at the node-2. 
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Figure 13: Wing Plate (PVDF) 
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Figure 14: Roll Rate Response 
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Figure 15: Roll Angle Response 
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Figure 17: Displacement Response : 1st Flexible Mode 

2nd Flexible Mode, Mach—I.O 

Figure 18: Displacement Response : 2nd Flexible Mode 
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Figure 19: Displacement Response : 3rd Flexible Mode 
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Figure 20: Input at Node 2 
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8     Conclusions: 

In this research, an attempt is made, perhaps for the first time, to model the dynamics of a smart 

flexible wing involving the integration of five disciplines, namely structures, aerodynamics, smart 

materials, control and flight mechanics! The control objective is to sustain a roll maneuver with 

a desired roll rate and to suppress the flexible mode vibrations by actively deforming the wing. 

Modeling of this dynamics is done using finite element method in the 'generalized ' coordinates. 

Because of the coupling between these subsystems, the resulting 'Matrix Second Order System' of 

equations consists of a symmetric positive definite mass matrix but a nonsymmetric and indefi- 

nite damping (which includes aerodynamic damping) and stiffness (that includes aerodynamic and 

piezo material stiffness, in addition to the standard structural stiffness) matrices! The piezoelec- 

tric voltage serves as the control variables. The voltage dependent mass, stiffness, and damping 

matrices are also determined to maintain the desired roll rate during the roll maneuver. The roll 

control is designed in a new framework called 'Reciprocal State Space' framework which allows 

to implement acceleration feedback control easily. For the vibration problem, the large model in 

the generalized coordinates is then transformed to a set of 'nonorthogonal modal' coordinates and 

model reduction is carried out in these modal coordinates. This model is then converted to the 

'state space' form and a controller is designed to supress the vibration using standard state space 

control theory. However, realizing that this full order controller is not practically achievable be- 

cause all the desired states for feedback control cannot always be measured, an observer is sought. 

Finally, the observer based controller design is illustrated with the help of an example. 

8.1    Future Research That Needs Support: 

There is clearly a need to carry out further research in the following important areas. Firstly, 

more research should be undertaken to come up with improved control design algorithms, in the 

lines of present research proposed in this report. Secondly, the traditional integrated optimization 

ideas need to be expanded to include the interactions between the five subdisciplines mentioned 

before. Last, but not least, is the need to continue the analytical studies such as those presented 

in this report to more general flight maneuvers involving not only roll but pitch and yaw motions 

as well, and also a combination of these maneuvers using smart deformable wings. Of course, in 
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addition to analytical studies, considerable effort should be expended in conducting application 

studies to realistic scenarios involving software and hardware issues for industrial structures such 

as real wings. Finally, the importance of conducting experimental studies to validate the theories 

cannot be overemphasized. Thus, a long term commitment for research in 'Flight Control with 

Smart Deformable Wing Structures' must be of high priority for Universities such as The Ohio 

State University and Air Force (WL) and Aircraft Industries to reap the benefits of this exciting 

research. 
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